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Abstract

Rotational energy transfer in collisions of nitrogen molecules has been stud-
ied theoretically, using the N4-Nj rigid-rotor potential of van der Avoird, et
al. [J. Chem. Phys. 84, 1629 (1986)]. For benchmarking purposes, converged
close coupling (CC) calculations have been carried out to a total energy of
about 200 cm~!. Coupled states (CS) approximation calculations have been
carried out to a total energy of 680 cm™!, and infinite order sudden (10S)
approximation calculations have also been carried out. The CC and CS cross
sections have been obtained both with and without identical molecule ex-
change symmetry, whereas exchange was neglected in the 10S calculations.
The CS results track the CC cross sections rather well: between 113 - 219
cm~! the average deviation is 14%, with accuracy improving at higher energy.
Comparison between the CS and IOS cross sections at the high energy end
of the CS calculations, 500 - 680 cm™!, shows that IOS is sensitive to the
amount of inelasticity and the results for large AJ transitions are subject to
larger errors. State-to-state cross sections with even and odd exchange sym-

metry agree to better than 2% and are well represented as a sum of direct and



exchange cross sections for distinguishable molecules, an indication of the ap-
plicability of a classical treatment for this system. This result, however, does
not apply to partial cross sections for given total J, but arises from a near
cancellation of the interference terms between even and odd exchange symme-
tries on summing over partial waves. In order to compare with experimental
data for rotational excitation rates of No in the n=1 excited vibrational level
colliding with ground vibrational level (n=0) bath N3 molecules, it is assumed
that exchange scattering between molecules in different vibrational levels is
negligible and direct scattering is independent of n so that distinguishable
molecule rigid rotor rates may be used. With these assumptions good agree-
ment is obtained. Although the IOS approximation itself is found to provide
only moderately accurate values for rate constants, [OS/ECS scaling meth-
ods, especially if based on fundamental rates obtained from coupled channel

results, are found to provide generally good accuracy.

I. INTRODUCTION

Being the most abundant species in the air, ro-vibrational excitation/deexcitation in Ny
collisions dominates the thermalization process when excess energy is supplied, for example,
in hypersonic flow fields, wind tunnels, or arc jets. In the velocity regime where the flow is
characterized by different rotational, vibrational, and electronic temperatures, [1] i.e., the
so called nonequilibrium regime, detailed knowledge of relative rates for intramolecular and
intermolecular energy transfer among vibrational (V), rotational (R), and translational (T)
degrees of freedom is required to determine the time it takes for the flow field to re-establish
equilibrium. These energy transfer rates are also required in modeling the operation of lasers
and other processes which require the knowledge of energy deposition pathways in air.

In spite of the importance of energy transfer rates in Ny, few direct experimental mea-

surements are available, and most studies rely on simple models to deduce the rate constants.



A notable exception is the work of Sitz and Farrow. [2] Using a pump-probe technique, they
directly determined rotational energy transfer rates of Ny in the excited, n = 1 vibrational
level upon collision with a bath of Ny molecules in the ground, n = 0, vibrational level.
Analogous studies on vibrational energy transfer are not available. Another quantity closely
related to rotational excitation rates is the collisionally induced spectral line shape. Line
shapes in coherent anti-Stokes Raman spectra (CARS) and stimulated Raman spectra (SRS)
of the vibrational Q-branch of N, are widely used as a temperature probe for spatially and
temporally inhomogeneous environments and this has prompted many studies of R-R and
R-T collisional energy transfer in this system. Comparison of theoretical results from the
present calculations with linewidth data will be treated in a separate paper. [3]
Theoretically, much effort has been devoted to the modeling of these energy transfer pro-
cesses. However, studies of V-V transfer neglected rotation, and most studies of R-R and R-T
transfer used a very simple potential energy surface and/or employed various approximations
to simplify the dynamics. Koszykowski, et al. [4] employed an atom-atom pairwise additive
Lennard-Jones potential and determined the rate constants using quasi-classical trajectory
calculations. While the goal of their calculations was to determine Raman linewidths, they
also deduced a scaling law for the rotational excitation rate constants. Using a somewhat im-
proved interaction potential, Agg and Clary [5] reported rotational excitation rate constants
calculated with the quantum mechanical infinite order sudden (I10S) approximation and
also with a modified breathing sphere approximation. Billing and Wang [6] used a semi-
classical scattering formalism along with a simple pairwise additive exponential repulsive
interaction to calculate high temperature rotational relaxation and transport coefficients.
The most accurate rigid-rotor No-Ny potential reported so far is that of van der Avoird, et
al. [7] (vdA) which is based on ab initio calculations and adjusted to fit the second virial
coefficients. Using the vdA potential, Green [8] determined the R-R transfer rates using
the IOS approximation and the energy corrected sudden (ECS) approximation, obtaining
reasonable agreement with experiment. Also using the vdA potential, Heck and Dickinson

[9] used classical trajectory scattering calculations to obtain transport and relaxation cross



sections, finding good agreement with the former but an inconsistent pattern for the latter
which they interpreted as suggesting that the interaction may be insufficiently anisotropic
in regions sampled at low energy.

The present study also employed the vdA potential, but used accurate close coupling
(CC) scattering calculations as well as approximate quantum dynamical treatments. To
test the range of validity of different angular momentum decoupling schemes, we carried out
collision calculations using the essentially exact CC formulation and the coupled states (CS)
approximation, also called the centrifugal sudden approximation, to as high an energy as
our resources would allow. In addition, the 10S approximation was employed.

The role of identical molecule exchange symmetry is of much interest. All previous cal-
culations on this system neglected this symmetry. In the present work, the CC and CS
cross sections were obtained both with and without exchange symmetry to better under-
stand the role of this process and to help devise economical schemes to treat ro-vibrational
excitation. There appears to be some inconsistency in the literature concerning degeneracy
factors for computing cross sections for indistinguishable molecules. It is important that
this degeneracy factor is consistent with counting of states in the two-body density matrix.
We use here a different convention from the widely used formula of Takayanagi, [10] and
this is discussed in some detail in the next Section. Results of the present calculation are
then presented in Section III. Section III A considers the accuracy of the CS approximation
by comparing with CC results and the accuracy of the IOS approximation by comparing
with CS results; [II B examines the role of identical molecule exchange symmetry; and II1C
compares the rotational excitation rate constants obtained by the different approximations

with experimental values. Finally, we present a brief summary in Section IV.

II. COLLISIONS BETWEEN IDENTICAL MOLECULES

When the colliding system is composed of identical molecules, the symmetry of the wave

function under exchange must be taken into account. Early treatments of exchange were



given by Takayanagi, [11] Gioumousis and Curtiss, [12] and Davison. [13] The cross section
expression of Takayanagi [10] has been commonly used in the literature for the collision of
identical molecules and is incorporated in the MOLSCAT [14] computer code. However, a
re-examination of the derivation of this expression indicates a problem with normalization
and symmetrization of the asymptotic wave function that was used to deduce the scattering
amplitude. Indeed, if one uses a normalized incoming flux and an outgoing flux where the
two molecules maintain proper exchange symmetry, the cross section so derived is different
from Takayanagi’s. Because this has not been discussed in the literature, we rederive below
the cross section expression using properly normalized and symmetrized asymptotic wave
functions and compare the result with Takayanagi’s expression and other expressions used
in the literature.

Let nq, 71, mq and ng, jo, mo denote the initial vibrational and rotational quantum num-
bers of the two molecules. The asymptotic form of the symmetrized wave function ¥* under
the incoming plane wave and outgoing spherical wave boundary condition is

1
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Here r; = (r;, ;) is the vector, in the space-fixed, center of mass coordinate system, between
the two nuclei in molecule 7; and R, the vector from the center of mass of molecule 1 to
that of molecule 2. Also, k, is the wave vector of relative motion, and x,;(r) and Y}, (%)
the vibrational and rotational wave functions. The superscript £+ denotes the system being
symmetric or antisymmetric with respect to the interchange of the two molecules, and

denotes the collection of quantum numbers n}, nj, j1, j5. In Eq. (2.1) the summations over



o/, my, and m}, are restricted to the range,

ny > na, all J1sJ2, M1, T2,
ny =mnz, j1 > jz, all my,my;

ny = Ng, J1 = J2, M > Ma; (2-2)

and this restriction is indicated by the primes on the summation symbols. The first term in
Eq. (2.1) gives a symmetrized and é-function normalized incoming plane wave. In the second
term, exchange symmetry is maintained in the ro-vibrational wave functions associated with
the outgoing spherical wave. The scattering amplitude is determined by ¢(n’,j;m)n’,j,m}|R)
and (il fymi| — ).

Most calculations, the present included, do not determine q(n/jim/n}jim,|R) and
q(nfjiminbiyms| — ]%) directly. Instead, calculations are carried out in the total angular
momentum (J) representation because the set of coupled equations for the collision prob-
lem is block diagonal in J and independent of M, the projection of J on the space-fixed

Z-axis, leading to much smaller calculations. A properly symmetrized and normalized basis

to expand the wave function of the colliding system, U¥, is then
1

2(1 + 5”1”2 5j1j2)

{]JM(Oéj12Z|E7 Iy, r2) + ]JM(aj12l| - Ev ro, rl)}v

IE,(ajl|R vy ry) = \/
(2.3)

with
Lna(egizl| R, v, v2) = Nogjy (1) X (r2) Voar (R, 71, 7). (2.4)

Here [ is the angular momentum of relative motion, ji2 = J1+J2, and J = 14J12. The coupled

angular momentum function Yjp; can be expressed in terms of the uncoupled functions

yJM(f%a flafz) = ZZ(j1j2m1m2|j1j2j12 my + mz)(jlzl my +mg M —my — m2|j121JM)

mi M2

X EM—TM-TM (E)}/JNM (721)}/]27@ (722) (2'5)

where (j172mima|j1J2712m12) is the vector coupling coefficients as defined by Condon and

Shortley. [15] Note that the summation over my, ms in Eq. (2.5), arising from the expansion



of the coupled angular momentum function Yy in terms of the uncoupled functions, is over

the complete range of my and my. Using the relations,

(j1j2m1m2|j1j2j12 my + mz) = (—1)jl+j2+jl2 (j2j1m2m1|j2j1j12 my + m?)v (2-6)

and

Eq. (2.3) can be written as

]fM(nlnﬂl]z]lz”R, 1'171'2) = {]JM(n1n2]1]2]12l|R7 1'171'2)
\/2(1 + 5”1”2 5j1j2)
£ (= 1) (g g jial| Ry, 12) ) (2.8)

The asymptotic form of the scattering wave function ¥* in the J-representation is given

by

lim U ZZZZAJM ajizli ko) Z ZZ
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OZ/

The coefficient Ajpr(ajial; ko) is determined by equating the first terms on the right hand

side of Eq. (2.1) and Eq. (2.9), both representing the incoming wave:

! L4 640,05
Aslajiali ko) = —ar—— (b )Y* (0,0,)

Qika 1+ 57%17%2 5j1j2 5m1m2 FM e

X (J1jemamalgigagiz mi + me)({j1e M — my — mg my + mo|ljiJ M), (2.10)

with ©,, ®, the angular coordinates of k.
The factor [(1+ 81655 )/ (14 8niny 65, in6mims )7 in Eq. (2.10) accounts for the difference
in the manner in which the J-representation and the uncoupled representation treat m; and

mo when ny = ny and j; = j5. In the uncoupled representation, the asymptotic expression
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for UF in Eq. (2.1) accounts for the fact that the internal state wave functions of the two
molecules are identical only if ny = na, 51 = j2, and m; = ms, and for this case the
factor (1 4 dnyny0514 5m1m2)_% is required to normalize the symmetrized ro-vibrational wave
function properly. The J-representation does not depend explicitly on my or my and, in

fact, requires a complete sum over m; and mg, even when ny = ny and j; = j;. Therefore,

(I

the normalization for U* in the J-representation is (1 + 6,,,,9;,;,) 2 and the conditions

analogous to Eq. (2.2) are

ni > ng, all gy, jo;

ny=ng, J1 2> Ja- (2.11)

In terms of the uncoupled representation this constitutes a double counting of some m;,
my states and it is necessary to account for this when transforming the .J-representation
S-matrices back to the uncoupled basis in order to obtain scattering amplitudes and cross
sections.

Equating the second term on the right hand side of Eq. (2.1), representing the outgoing
spherical wave, with the second term in Eq. (2.9) gives the expression for g(n/ j{m/n}jim}| R):

Q(nllj{mllnlzjzmﬂR —QWZZZZZZZI .

J M g, il

y ( (1 Oy 05 g )1 A4 O 61 1) )% .
(14 Sy 01 5 Oy ) (1 + 5n, w05ttty )/ TR
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The T-matrix, TF, is simply related to the S-matrix as
TF (ajral; a'ji,l') = 6(agial; o j1,') — ST (ajials o'51,1). (2.13)

: P2ttt oY 5
The expression for ¢(n} jyminyjyms|—R) is the same as Eq. (2.12) except that Yy ar_ 1 s (R)

A

is replaced by Yirar_ms _ms (— ).



Substituting the expressions of q(n’lj{m’ln’zjém’QU%) and q(n}jiminyjyms|— ) into U in
the uncoupled basis and making use of Eqgs. (2.6) and (2.7), Eq. (2.1) becomes

1
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The outgoing spherical wave in Eq. (2.14) is now in the form of a spherical wave times an
angular function and a symmetrized ro-vibrational wave function of the two molecules. The
differential cross section, do* is readily deduced from Eq. (2.14). Since most experimental
measurements use unpolarized molecules and do not measure the final m}] and m), the

corresponding do* should be averaged over m; and my and summed over m/ and m/:

(2].1“2]“2222

The above sum 1is restricted in order to count only physically distinguishable states. The

conversion from a restricted to a full sum cancels out the factor

( (1 + 5”1”2511]2)(1 + O nééﬂjé) )%
(1 + 5n1n25j1j25m1m2)(1 + 5 i '5]{]§5m m2) ‘

Thus do¥ is given by



o = YYYY
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The corresponding integral cross section is given by

O'i(nln2j1j2 — nllnlzjijé) = (2j1 + 1)(2] ‘|‘1 k2 ZZZZZ

J ]12 ]12

x (2J + 1)|TJ (ajral; a'ji,l)|% (2.16)

We note that Eqgs. (2.15) and (2.16) represent cross sections where the final ro-vibrational
wave functions of the two molecules have proper exchange symmetry. The use of sym-
metrized ro-vibrational wave function in the scattered wave is based on the argument that
molecules leaving the interaction region will maintain the correct exchange symmetry. This
symmetry is not destroyed unless another collision occurs, but we are working in the single
collision regime. Note also that Eq. (2.16) is formally identical to the equation used for
collisions of distinguishable molecules except that the latter do not carry + labels and the
former are restricted to rotational quantum numbers in accord with Eq. (2.11).

The present derivation differs from Takayanagi’s [10] in a number of places. The asymp-
totic wave function in the ji,my, jo, ma representation in Eq. (2.1) differs from his expression
in the normalization factors for the incoming plane wave, [2(1 4 8,1, 871/, Smym, )] "2+ and the
outgoing spherical wave, [2(1 + 8,11 851 i1 Ot )]_% Both are absent in his expression. The
latter is introduced into Eq. (2.14) so that the ro-vibrational wave functions associated
with the outgoing spherical wave are normalized. Finally, Takayanagi used the following

expression for the scattered wave to determine the scattering amplitude,

exp zka/R
ZZZ ) ( ){q( njymy n2]2m2|R)
+ q(n2j2m2n1j1m1| — ]A%)}Xnij{(rl)Y (rl)xn2]2(r2)Y mé(fg) (2.17)
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Thus Eq. (2.17) adds up the direct and exchange contribution to the scattering amplitude,
but the ro-vibrational wave functions of the two molecules in the scattered wave is not
symmetrized; whereas Eq. (2.14) maintains the exchange symmetry of the molecular wave
functions. Also, the summation over o', m/, and m/, are full sums in Eq. (2.17), whereas
in Eq. (2.14) they are restricted sums in order not to sum over redundant terms in the
close coupling wave function. Based on matching Eq. (2.17) with the scattered wave in the

J-representation, Takayanagi obtained

O'i(nln2j1j2 - nllnlﬂijé) = (2]'1 + 1)(2] ‘|‘1 L2 ZZZZZ 2J+1

o J ]12 ]12

(1 + 5”1”2511]2)(1 + 5n'n§5J{J§)|TJ (ajl?l; aleZ )|27 (2'18)

which differs from Eq. (2.16) by the factor (1 4 6n,s,0,5,)(1 + 0415105151 ). Arguing that, for
initial states nq7; = ngjo, the number of collisions is half the value for the case nyj; # ny72,
Takayanagi [16] introduced a symmetry correction factor of % to the density used in the
calculation of the energy transfer rate when nyj; = nyje. In the rate expression, this factor
of 3 will cancel out (14 6,,n,6;,5,) in his cross section expression. Note that this factor has
already been incorporated in our cross section expression, Eq. (2.16), by the requirement
that the incoming flux is é-function normalized.

In their effective potential formulation for the collisions of identical rigid-rotors, Zarur
and Rabitz [17] included a factor of (1 + 68;1;:)" to Takayanagi’s rigid rotor cross section
to take care of the double counting in the total cross section when the final states are the
same. When vibration is included, this factor becomes (1 + 6, ] /5/ /)_1 and cancels out
the corresponding factor in Eq. (2.18). If Takayanagi’s symmetry factor of % in the case
niji = ngjz2, and Zarur and Rabitz’s factor of (1 4 &0 05 /) when nlj; = nbj) are
incorporated into Eq. (2.18), then the difference between Takayanagi’s expression and the
present result disappears. It should be emphasized that, in using the present expression,
there is no need to tamper with the definition of the density, which we believe is a definite
advantage in a study, such as the present one, where cross sections for many different types

of transitions are involved.
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Schaefer and Meyer [18] reported a close coupling calculation for the elastic scattering
of para-Hy (j1 = 0,j2 = 0) — (0,0) and ortho-Hy (1,1) — (1,1). Their expression for
the integral cross section differs from Eq. (2.16) by the factor (1 + Onyny0nrns 05,5,65150 ). I
Takayanagi’s symmetry factor of % is incorporated into their cross section expression, it will
reduce to our result in Eq. (2.16). Alternatively, in comparison with experimental data, the
symmetry factor can be applied to the density. It is not obvious from their paper whether

this has been done.

III. RESULTS AND DISCUSSION

The vdA potential was described in Ref. [7]. For use in the molecular scattering cal-
culations the 20 unique angular expansion terms were interpolated from a tabulated radial
grid as described in Ref. [8]. All cross section calculations were done with the MOLSCAT
[14] computer code, using the HIBRIDON [19] integrator to solve the coupled equations.
Integration parameters were chosen to obtain cross sections generally accurate to about 1%.
Nitrogen rotational energies were calculated from the rigid rotor formula using a rotation
constant of 1.92265 cm™!. Calculations were done for both even and odd exchange symme-
tries, and cross sections with no exchange symmetry were deduced from the symmetrized
T-matrices as described in Section IIIB. A few test calculations which compared such re-
sults with results calculated directly using a distinguishable molecule basis set confirmed
the validity of this procedure.

Due to their prohibitive cost, CC calculations were carried out only for (even j, even j)
collisions: a 12-level calculation from 22 to 106 cm™ and an 18-level calculation from 113
to 219 cm™?, the term level denoting the pair of quantum numbers (ji, jo for distinguishable
molecules and j; > j for identical molecules) ordered by increasing energy. CS cross sections
for (even j, even j) and (odd j, odd j) collisions were computed for energies from 22 to 680
ecm~!. The Nj rotor basis set varied from 12-level to 42-level, the highest level included

being (18,6) and (17,7), respectively. For (even j, odd j) CS calculations were carried out
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at energies from 20 to 620 cm™!, with (16,7) being the highest level included in the basis.
To reduce the computational cost, the largest calculations, i.e., the 42-level case for (even j,
even j) and the 30- and 38-level cases for (odd j, odd j) were done with total J increasing in
steps of three instead of one, and the 65-level case for (even j, odd j) was done with steps of
two. Numerical tests showed that, on the average, this interpolation on .J introduced errors
of 2-3% in cross sections; this error decreased with increasing energy where more J values
are required.

Some calculations with increasing basis set size were done to study convergence of cross
sections. These suggested that at least four closed levels must be included to obtain results
converged to better than 10%. A comparison between the 36-level and 42-level CS calcula-
tions for (even j, even j) with even exchange symmetry illustrates this point. At 500 cm™,
there are six and twelve closed levels in the 36-level and 42-level calculations, respectively,
and the average deviation between calculated cross sections is 2.5% and the maximum devi-
ation, 22%. At 550 cm™!, the number of closed levels is two and eight, respectively, and the
average and maximum deviations are 10% and 502%. At 590 cm™!, the number of closed
channels is one and seven, and the average and maximum deviations are 11% and 151%.

The TOS calculations used the same numerical procedures as described in Ref. [8]; how-
ever, a program error in the associated Legendre polynomial subroutine in MOLSCAT has
been corrected and the present I0S results supercede the data published previously. The
fundamental cross sections, Q(Ly, L) through Lq, Ly = 18, were obtained by solving the

IOS equations and state-to-state cross sections were deduced from scaling relations.

A. Comparison of CC, CS, and IOS cross sections

Because the CS approximation is expected to be more accurate than the IOS approxima-
tion at low energies, the CS results are compared with the CC cross sections in this energy
region. This furnishes a test of the CS approximation where it is expected to perform least

well. In turn, the IOS results are compared with the CS results at the high energy end of
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the CS calculations to determine their accuracy.

The comparison between CC and CS cross sections is presented here only for (even j,
even j) collisions using identical molecule symmetry with even exchange and for energies
up to 219 cm™!, where CC data are available. The results with odd exchange are similar.
At 22 em™!, the lowest energy calculated, the deviation for the only energetically allowed
inelastic channel, (0,0) — (2,0), is 26%. Between 22 and 106 cm™! the average deviation
is 21%, and between 113 and 219 cm™' it is 14%. Thus the CS approximation gives a
reasonable representation of the CC results, even in the low energy region. Table I presents
a typical example. Here instead of tabulating all transitions starting from the same initial
level or ending with the same final level, Table I lists (at two energies, 119 and 219 em™") all
transitions starting with at least one molecule in the j = 0 level and ending with at least one
molecule in the § = 4 level. Thus it represents part of the input data used in the calculation
of the effective excitation rate for the 0 — 4 transition of Ny upon collision with a bath of
Ny molecules. The largest difference is 35% for the (0,4) — (4,4) transition at 119 ecm™".
The smallest is < 0.1% for the (0,4) — (4,0) elastic scattering at 219 cm™!. (Because of
exchange symmetry, (0,4) and (4,0) denote the same level.) Elastic cross sections in the CS
approximation are consistently in good agreement with the CC results. However, unlike the
IOS result discussed in the following paragraph, the difference between CC and CS inelastic
cross sections does not seem to correlate with the amount of inelasticity. The next to last
entry in Table I presents the sum of all cross sections in the table, including the elastic
case, and the last entry presents the sum of all inelastic cross sections. Due to the good
agreement between the elastic cross sections and the fact that they are by far the largest,
good agreement is found between the two results for the first sum. The second sum roughly
represents the contribution to the rate constant at those two energies; a weighed sum instead
of direct sum is used in the rate constant calculation. Here a 17.5% difference is found at
119 em™!, and 13% at 219 cm™!. Based on these results and the fact that the performance
of the CS approximation is expected to continue improving as the energy increases, it is

concluded that the error introduced in the room temperature excitation rates by the use of
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the CS approximation is less than 15%.

At the high energy end of the CS calculation, the validity of the IOS result is tested
by comparison with the CS cross sections (for distinguishable molecules). Fig. 1 presents
the percent difference between the two sets of cross sections at 680 cm™!; note that this
is the relative kinetic energy for the IOS cross sections, but the total energy for the CS
cross sections. Again the initial and final levels in the figures are chosen such that at least
one molecule initially is in the 5 = 0 level, and at least one molecule is in j = 4 after
the collision. The known 1OS behavior of larger error with increasing inelasticity can be
recognized. It is seen from Fig. 1, where entries at the right-most point of the abscissa
represent transitions to the (4,16) level, the difference is consistently larger than 100% for
initial levels with low (j1,J2). Only for initial levels (0,12) and (0,14) is the difference less
than 100%. The corresponding results at 500 cm™! have a larger scatter, as expected; the
IOS approximation is generally less good at lower collision energies because the inelasticity
is then a larger fraction of the collision energy. However, the IOS approximation appears to
perform better for the sum of the inelastic cross sections than for individual values. At 680
ecm™!, the difference in the sum is 32%, and at 500 cm™! it is 30%. While significant errors
are involved in the 10S cross sections, it has been shown in Ref. [8] that methods which
enforce detailed balance and which correct for effects of inelasticity improve the 10S results.
None of these corrections have been used here; however, they will be discussed and applied

to the rate constants which are presented in Sec. 111 C.

B. The Role of Exchange Symmetry

Exchange symmetry of identical molecules is a purely quantum mechanical phenomenon.
Because classical mechanics is frequently used to study molecule-molecule collisions and
also because all previous quantal treatments of this system consistently neglected exchange
symmetry, it is of some interest to determine its importance for this system.

A basic assumption underlying the discussion of identical molecule symmetry is that ther-
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mal energy nonreactive collisions do not change the nuclear spin states, I;, of the molecules.
Molecules which differ in their nuclear spin states can, in principle, be identified after the
collision and thus are described by distinguishable molecule collision dynamics. For colli-
sions of identical molecules (1 = Iy = I) the total scattering wave function must be either
symmetric or anti-symmetric with respect to exchange of the two molecules, depending on
whether [ is an integer (Bose-Einstein statistics) or a half-odd integer (Fermi-Dirac statis-
tics). Eq. (2.3) defines symmetrized VRT scattering basis for the spatial coordinates, and
these must be combined with total nuclear spin functions of the appropriate symmetry (cf.
Ref. [10]). The total nuclear spin functions, [, are the vector sum of [; and [y and it
turns out that for [;,, = 21,21 — 2,...,0 the spin wave functions are symmetric and for
Lo =21 —1,...,1 they are anti-symmetric. [20] For a homonuclear molecule like N, simi-
lar considerations applied to the individual nuclei require that even rotational levels, which
are symmetric, combine only with symmetric N spin functions (I = 0,2) and odd rotational
levels, which are anti-symmetric, combine only with anti-symmetric spin functions (1 = 1).
In an experiment which does not distinguish nuclear hyperfine structure, the measured cross

sections for identical particles are obtained from
o(j1jz — JiJy) = wrot (Jija = Jijs) + wT o (Juja — Jids) s (3.1)

where wt is the fraction of the (21 + 1)2 total nuclear spin states associated with even
exchange symmetry and w™ that associated with odd exchange; the weights depend on the
nuclear spin, I, and whether the nuclei involved obey Bose-Einstein or Fermi-Dirac statistics.
[10] The oF are obtained from Eq. (2.16).

The expansion basis set for the spatial coordinates of identical molecules, Eqgs. (2.1)
and (2.3), is a linear combination of the basis set used for distinguishable molecules. Since
it 1s assumed that T-matrix elements are diagonal in the nuclear spin functions, one can
readily transformed from one basis to the other, providing relationships among identical
and distinguishable molecule cross sections. In particular, Eq. (2.3) shows that properly

symmetrized basis functions for identical molecules can be written in terms of those for
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distinguishable molecules (see also Ref. [21]). The cross section expression for identical rigid
rotors is obtained by rewriting Eq. (2.16) as
Ui(]ﬁjz - ]{]é) = Z Bj |ch(j1j2j121;j{jéj{zl’ﬂ? (3-2)
Jj12j{2ll/
where

(2J 4+ 1)x
(271 + 1)(272 + 1)k2

By =

Using Eq. (2.3) the T-matrices in the identical molecule basis can be readily expressed in

terms of T-matrix elements in a distinguishable molecule basis as
TF (Jrjasral; 1750150) = 2NN [T5(G1jadnal; 1350100") £ P'Ta(G1j2iial; d53155.00) . (3.3)

where the normalization and the parity factors are

[T

N = [2(1 + 5j1j2)]_ )
P = (_1)j{+j§+j{2+l"

It should be recalled that symmetrized quantities (indicated by a + superscript) are limited
to “well-ordered” sets of rotational states, for example, j; > j2. Substituting into Eq. (3.2),

the identical molecule cross sections can be written as

ot (j1js — jijh) =o'+ o £ ¢, (3.4)
where
o(j1gz = J1ds) = 4NN ST By |Ti(G12dieli 31755150017 (3.5)
Jj12j{2”/
o (jujz = J17y) = AN?N? 3" By |Ty(jujagnels 7351012017 (3.6)
Jj12j{2”/
and
E(jrgz — 71J%) = 4NN N~ 2By P Re {T(jrjajials j1i5012l ) Ta(rjadnels 571010 )}-
Ji15 31210
(3.7)
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The first two terms in Eq. (3.4) give cross sections which would have been obtained in

calculations for distinguishable molecules. The first,

o (Jujz = Jijz) = (L4 8) T (L4 6jg0) T o (Gadz = 12) (3.8)
we call the direct cross section, and the second,

o (g2 = J1ja) = (L4 6,5,) 7 (L4 85) 7 o (Gad2 = J31) » (3.9)

we call the exchange cross section since it exchanges the role of j! and j}. Recall that o and
o, as derived from Eq. (3.4) are defined only for “well-ordered” rotor levels whereas the
labeling for the distinguishable cross section o on the right-hand-side of Egs. (3.8) and (3.9)
need not be well-ordered. The third term in Eq. (3.4) is a cross term; unlike o¢ and o,
which are nonnegative, £ can be of either sign. It is this term which contains the quantum
interference effects. It is obvious from Eq. (3.4) that the importance of quantum interference
effects is measured by the difference between ot and o~.

Just as indistinguishable molecule cross sections can be written in terms of distinguish-
able molecule T-matrices and hence related to distinguishable molecule cross sections, con-
versely, distinguishable molecule cross section can also be obtained from T-matrices in an
identical molecule basis. In fact, for coupled channel methods the latter are less expensive
to obtain computationally and so calculations are generally done in the identical molecule
basis, a procedure used in the present study. Distinguishable molecule cross sections are

then obtained from
. g 1
0(J1j2 = J1j2) = 5L+ &) (1 +65151)
x [0 (12 = 7135) + 0~ (g2 — 778) + QQ € (Gujz — 7143 - (3.10)
where 7,7, indicates a possible reordering to give j; > j, as required for the identical particle

basis set, and the sign change which may be necessitated by this reordering is given by

‘I’lv jl 2]2
Q= .

_17 jl < j2

18



The cross term in the identical molecule basis, (%, is given by
EGih = i) = > 2By Re {TF (idajnoli 71751) T7 Gizinals 750107} - (3.11)
Tjy il
Finally, it should be noted that even though Eqs. (3.2) — (3.11) are expressed within the CC
formalism, exactly analogous results hold for the CS approximation as well.

A comparison of ot and o~ (referred to below as even and odd cross sections) calculated
in the present work showed that the two sets of results are very close. Fig. 2 presents the
difference between ot and o~ from the lowest eight initial levels to the lowest 14 final levels
at 219 em™!. The largest difference was only 6% [for (6,2) — (0,0)] with an average difference
of only 1%. At a total energy of 113 cm™! the largest difference in CC cross sections was
19% [for the transition (6,0) — (0,0)] and the average difference was 3%. The improved
agreement with increasing energy, indicated by the CC data at 113 and 219 ecm™!, continued
at higher energies. In the energy range 500-600 cm™!, the average difference between the CS
even and odd cross sections was only 0.5%. From Eq. (3.4) the close agreement between o
and o~ indicates a near zero cross term, £. Table II shows the even and odd cross sections
as well as 0? and " for a number of state-to-state transitions at several energies. When

the quantum exchange effects average to zero, as we find here,

oot o ot Lo

since the spin statistics weights in Eq. (3.1) add to one. The fact that indistinguishable
molecule effects are unimportant here is perhaps not surprising; it is well known, for example,
that such effects are not important for gas kinetic properties of moderately heavy particles
at thermal energies. [22]

The near vanishing of the cross term could signify that all the terms in the partial wave
(J) sum in Eq. (3.7) are small or it could signify cancellation of different terms. Fig. 3
presents the difference between the partial cross sections o and o7 as a function of J for
the (2,0) — (6,4) transition at 219 and 680 cm™'. The partial cross sections are defined in

an obvious way from Eq. (3.2) as
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= T = oerr N2
7T 2+ D (22 + DR ]Z]Z;ZI:ZZ:( NTF (172712 5175120 (3.12)

so that oF = Y, 0F. It is clear from Fig. 3 that the difference between individual oF

can be large, but that the oscillatory structure leads to nearly complete cancellation on

summing over J. Indeed, it is quite impressive that, in spite of the large oscillations, the

differences between o and o~ for this transition are only 0.3% and 0.03% at 219 and 680
-1

cm™, respectively.

The fact that the cross term, &, is nearly zero, so that
(12 = 132) & 0" (ujz = 3135 + 0 (a2 = J153), (3.13)
represents a necessary condition for a classical treatment to be applicable, provided exchange
is accounted for by adding the exchange cross section to the direct term. On the other hand,

the large deviations between o} and ¢ indicate that at a detailed level the system is still

quantal, not classical. Effects of this quantum behavior might be observable, for example, in

1

differential cross sections. Even at the highest energy used in the CS calculation, 680 cm™",

o} and o7 still behave quantally. Only in a global sense, upon summation over .J, does the
system exhibit classical behavior.

In a seminal paper, Gioumousis and Curtiss [12] suggested that at the classical limit,
the cross terms would be rapidly varying functions with a mean value of zero and so might
be ignored. Our results support the accuracy of this “random phase approximation” for the
total cross section o in thermal Ny collisions. The fact that more partial waves contribute
to the cross section at higher energies is consistent with greater cancellation leading to the

smaller differences between o and o~ found at higher energies.

C. Rotational Excitation Rate Constants

A thermal velocity average of the state-to-state cross sections, o(j1j2 — j1J5), gives the
two-body rotational excitation rates for the rigid rotors, R(j1j2 — j1j3). Experiments often

measure an effective one-particle excitation rate, the case of a “test particle” in a thermal
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bath, which is obtained by averaging over a thermal distribution of the initial bath states
and summing over the final bath states. If the bath is composed of molecules which are
distinguishable from the “test particle,” the effective one-body rotational excitation rate
constants R(j; — j;) are given by
R(jr = 1) = D_ pl52) R(j1j2 = j1ja): (3.14)
7234

where p(j3) is the distribution of initial bath states. This distribution is given by

pliz) = (22 + Vg e P2 /M [ 32 (2) + 1)gje= /M (3.15)
J
where k is the Boltzmann constant, T is the temperature, and the nuclear spin statistics
degeneracies for Ny are g; = 1 for odd j and ¢; = 2 for even j. This procedure is obvious
for excitation by a bath of foreign molecules, for example, excitation of Ny by Hy; but it
applies equally to excitation of Ny by Ny molecules which are distinguishable because they
have different nuclear spin, i.e., Iy # I;.
In the following, distinguishable rates for the N5-Ny case are considered first, followed by
a discussion of identical molecule rates. We argue here that experiments such as Sitz and
Farrow’s, [2] which measure the rotational excitation of Ny in the n = 1 level by a bath of
molecules in the ground vibrational level, measure essentially distinguishable molecule rates.
At thermal energies vibrational excitation is very much slower than rotational excitation and
it 1s believed that pure rotational excitation rates for this system depend only weakly on
the vibrational level. This corresponds to intermolecular potential coupling matrix elements
which are nearly independent of and diagonal in vibrational level, an approximation which
has been useful for this and similar systems. In the limit of zero vibrational coupling it
is readily shown that the two vibrational states can be treated formally as distinguishable
molecules. Based on these considerations, rotational excitation of Ny due to collisions with
a bath of Ny molecules in a different vibrational level may be treated using distinguishable
molecule rates.
The one- and two-body rates evaluated using available CC plus CS cross sections are

referred to below as coupled channel rates and labeled as CC-CS. In evaluating Eq. (3.14)
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it is necessary to include all the significantly populated bath levels, j;. At 300 K the
distribution among even rotational levels peaks at j ~ 6-8, and including levels through
J = 18 recovers about 97% of the population. While 7 = 18 was the highest rotational level
we were able to include in our CS calculations it was not possible to include basis functions
where both rotors reached this value. In fact, 7 = 16 was the highest level for which we
obtained adequate cross sections for a thermal average to get rate constants. It is therefore
desirable to extrapolate the coupled channel results somewhat to obtain effective one-body
thermal rates; such extrapolations will be even more important when considering rates at
elevated temperatures. We considered several extrapolation schemes based on the I0S and
ECS scaling laws. [8]

Both IOS and ECS provide a prescription for obtaining all the state-to-state rates,
R(j1j2 — j1J5), from a limited subset of “fundamental” rates, Q(L1, L2), using the scal-
ing relationship:

R(juj2 = j13) = (21 + 1272 + 1)

2 2
Ji Ly g J2 L2 jg

X Y D(jrja; L1La)? Q(L1Lz),  (3.16)
L1Ls 0 0 0 0 0 0

where (:::) is a 3j-symbol. Eq. (3.16) is applied only to energetically downward collisions,
those in which energy is transferred from rotational to translational degrees of freedom.
Upward rates are obtained from the corresponding downward rates using the detailed balance

requirement. The ECS correction factor, introduced by DePristo, et al., [23] is given by

_ {6+ [oL (/T L L)}
{6+ ole(n/T)¥ 0 j2)*}

Here p is the reduced mass of the colliding system, [. a “critical impact parameter,” T

D(j1j2, L1L>) (3.17)

the temperature; and « is a proportionality constant with a value of 0.065 for I, in A,

reduced mass in atomic mass units, temperature in K, and € in cm™!.

The frequency
factor, 9(j1J2), representing the energy spacing between rotational levels, can be chosen in

various ways. [8] In the present work we used Q(j1j2) = 2B.(j1 + j2) where B, is the N,
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rotational constant; this was found in Ref. [8] to give the most reasonable results. For pure
1OS scaling, I. = 0 so that D(j1jq, L1L2) = 1. It should be noted that this scaling relation
applies to distinguishable molecules; although IOS may be applied to identical molecules,
cross terms arise which appear to preclude such simple scaling laws.

A variety of methods for extrapolating the coupled channel results can be obtained within
this IOS/ECS scaling framework by using different choices for the “fundamental” rates. We
describe here methods which appeared to be reasonable as judged from their ability to
reproduce the calculated coupled channel values. The first simply takes the fundamental

rates from the coupled channel values for R(0,0 — Ly, Ly):

Q(L1, Ly) = [(2Ly + 1)(2Ly + )] R(Ly, Ly — 0,0)

_ e(EL1+EL2)/kTR(O7O — Ly, Ly). (3.18)

These were available only through Li, L, = 16,4, and also excluded 14,10, 14,12, and

14,14. However, it was possible to obtain all fundamentals to L1, Ly = 16,16 by using
Q(L1, Ly) = (2L + 1) 'R(0, Ly — L4,0), Ly > Ly (3.19)

for those which could not be obtained via Eq. (3.18). By comparing IOS/ECS scaling
predictions with the 4901 coupled channel values it was found that ECS corrections, i.e.,
nonzero [. in Eq. (3.17), did not improve on pure 108 scaling. The median absolute relative
error from the IOS scaling using these base rates was 17.5%, with an average of 87%; only
16% of the predicted rates were in error by more than a factor of two and 28% by more
than 50%. The much larger root mean square relative error of 352% is heavily weighted by
a small number of very poor predictions. This extrapolation scheme is designated here as
CSX and the fundamental rates are listed in Table III.

It should be realized that the CSX fundamentals could have been obtained exclusively
from Eq. (3.19). If the scaling method were exact this would give the same rates as
Eq. (3.18). We have examined this by using the fundamentals deduced from R(0,0 — jy, j2)

via Eq. (3.18) to predict R(0, j1 — j2,0); for j1, 72 < 12 the relative errors were typically less
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than 20% and almost always less than 50%, consistent with the overall accuracy of the fit.
As might be expected there was a trend for increasing discrepancy with increasing difference
in the inelasticity of the two rates.

The second method determines the fundamental rates via a weighted linear least-squares
fit of Eq. (3.16) to the complete set of 4901 coupled channel values. This has the potential
advantage of allowing the determination of fundamental rates for Ly, Ly > 16. [Note that
the limit on the sum in Eq. (3.16) is determined by the 3-5 symbols and includes values as
high as the highest j; + ji; these are set to zero if not available.] In practice, however, it
was found that using L., > 16 resulted in negative values for fundamental rates which, of
course, is disallowed. The nonlinear [. parameter was varied manually for each L,,,,.. The
best fit was found with L,,,, = 16 and [, = 2.5. It should be noted that [. = 2.5 gave the
best fit by all criteria considered, but variation with /. was not dramatic; for example, the
root mean square relative error from the best fit was 49% whereas it was 53% with [. = 0.
The median absolute relative error from this scaling method was 34% with an average of
38%; less than 2% of the predicted rates were in error by more than a factor of two and
only 29% were in error by more than 50%. The much lower root mean square relative error
found here can be attributed to the fact that this quantity is minimized by the fit. This
extrapolation scheme is designated here as LSQ and the fundamental rates are listed in
Table III.

The third method is not an extrapolation, but used ab initio IOS values, which were
obtained up to L., = 18. These were modified as suggested by Chapman and Green [24]
and Agg and Clary [5] to partially account for the neglect of inelasticity in the IOS method.
It was found that ECS corrections did not improve on IOS scaling when using these ab
initio IOS fundamental rates. The median error from this scaling method was 32% with
27% of the rates in error by more than a factor of two and 40% in error by more than 50%.
However, the average absolute error and rms relative error from this method were extremely
large owing to extremely large errors in a small fraction of the rates (mainly those with large

inelasticity). This method is designated here as 10S and the fundamental rates are listed in
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Table III.

The rates presented in Table III and in subsequent tables are given in units of
psec” torr™! which are not standard units for collision rates but which were chosen to com-
pare more directly with experimental values of Sitz and Farrow. [2] These authors used units
more appropriate to a linewidth parameter, and, in particular, reported values correspond-
ing to halfwidth at half maximum for a Lorentzian line profile. A halfwidth in psec™'torr™!
can be converted to the perhaps more familiar pressure broadening units of 1072 cm!atm™!
by dividing by 2.4785 (as noted by Sitz and Farrow). Conversion to more conventional units

1

for collision rates may be effected by noting that 1 psec™'torr™' corresponds to 3.0825x

107 cm3sec™t.

Effective one-body excitation rates for distinguishable molecules calculated in several
ways from Eq. (3.14) are reported in Table IV for even j. The results labeled CC-CS used
only thermal averages of the available CC and CS cross sections, preferring CC values when
they were available, and setting all missing rates to zero. The sum over j; in Eq. (3.14) and
in the calculation of the partition function, i.e., the denominator of Eq. (3.15), employed
only rotational levels for which cross sections are available. For the CC-CS rates, this
means values only through j5 = 16. Note that the effective partition function so determined
differs somewhat from its true value; the use of this effective partition function partially
compensates for the incompleteness in the set of cross sections used in the rate calculation.
Next, these CC-CS rates were supplemented by using the three scaling procedures, CSX,
LSQ, and IOS, to obtain the missing values. Here the sum over j; included values through
J2 = 18, and the sum over j} included values through j, = j» + 18. Including extrapolated
values is expected to increase the rates because it incorporates the contributions for higher
J5- While this is generally the behavior found, for some of the lower ji, 77 where most of the
important rates are included in the CC-CS results, the use of the more complete partition
function in the calculation of the CSX, LSQ, and TOS scaled rates leads to a slight decrease
when compared with the CC-CS rates. To provide another measure of the accuracy of the

scaling methods we have also listed effective one-body rates obtained by calculating all of
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the two-body rates from the scaling equations, using the same limits on js, 75 as above.
Comparing these with the CC-CS plus scaling results, it is seen that the scaling methods
are accurate to typically 10-20% for these highly averaged quantities, although accuracy is
somewhat less good for the smaller rates.

It should be recalled that the CSX and the IOS schemes differ only in the fundamental
base rates which are used: the former are taken from CC-CS calculations and the latter
from an ab initio IOS calculation (modified for the ignored energy gaps) and so comparison
of these results provides some measure of accuracy of the ab initio IOS. In general, and
especially for the larger Aj transitions and for transitions among higher levels, the 10S
predictions are overestimates. In this context, we also report in Table IV results obtained
directly from ab initio [OS calculations with no corrections for inelasticity and using the
[0S scaling relations for both upward and downward collisions (i.e., no detailed balance).
These predictions are larger still, suggesting that the correction introduced by Chapman
and Green [24] does give improvements but perhaps does not go far enough. The LSQ
values are almost always smaller than the CSX values, more so for larger Aj and higher
rotor levels; this is most likely attributed to the fact that the former use the ECS correction
which tends to reduce rates with larger inelasticity. In general, we believe that the CSX
extrapolation is likely to somewhat overestimate rates whereas the LSQ extrapolation is
likely to somewhat underestimate them, so that an average might provide the best results.
Therefore, distinguishable molecule rates for odd j in Table V are reported for only these
two extrapolation schemes in addition to values obtained exclusively from coupled channel
results.

The experimental data of Sitz and Farrow [2] are compared in Table IV with the var-
ious theoretical results. The CC-CS values augmented with extrapolated CSX and LSQ
rates, which we believe to be the most accurate, generally agree with experiment to within
experimental error as shown in Fig. 4. The large Aj transitions are exceptions. They are
consistently smaller than experiment. This is reasonable in view of the fact that the present

calculations neglect exchange, and the additivity of the direct and exchange cross sections
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means that the calculated values should approach experiment from below. Even though the
preceding paragraphs argue that exchange contribution in the collision between n = 1 and
n = 0 molecules should be significantly smaller than between two molecules in n = 0, it
is not exactly zero. For large Aj transitions, the direct rate itself is exceedingly small, so
exchange may be more important there. The 0 — 8 transition is another example of large
discrepancy, & 40%, between theory and experiment although there are large uncertainties
on the experimental value. The fact that theory is too large is particularly puzzling in light
of the preceding argument about exchange contributions.

Part of the discrepancy between theory and experiment may also be due to inaccuracy
in the potential. The classical trajectory calculation of Heck and Dickinson [9] indicated
some deficiency of the vDA potential which shows up in low energy collisions. Comparing
theoretical low-temperature Raman linewidths with SRS data [3] also indicates that the
vdA potential may be too attractive in the van der Waals region. While such problems
may become less important at higher temperatures, it still may account for some of the
discrepancies between theory and experiment.

In the case of identical molecules, the definition of R(j; — ji) needs to be modi-
fied. While the two-body rate for identical molecules is a straightforward extension of the
corresponding distinguishable molecule rate obtained by thermally averaging the identical
molecule cross sections, the meaning of an effective one-body rate for identical molecules is
rather obscure. When the molecules are indistinguishable, it is not meaningful to discuss
a rate where the initial state of molecule 1 is j; and its final state is j;. An experimen-
tally meaningful quantity appears to be a rotational relaxation time, for example, the time
required for a system of Ny molecules originally in thermal equilibrium to equilibrate after
the addition of a Ny molecule prepared in a specific j; level. The rotational relaxation time
of identical molecules can be formally defined in terms of a set of effective one-body rates
R(j1 — j1). In this sense, it is still meaningful to reduce the large number of two-body
cross sections into effective one-body rates, even though the individual one-body rates may

not be experimentally measurable.
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Although different experiments may require somewhat different definitions of an identical
molecule effective one-body relaxation rate, we discuss here only a particular extension of
Eq. (3.14) which is derived in the Appendix. Since exchange scattering is allowed only if
the rotational levels have the same parity and are associated with the same nuclear spin,
the contributions from even and odd j, are counted differently. Thus, for excitation of a

molecule with even j; and nuclear spin /7,

Ri (1 = 1) = p(L)Ri (5 — 51)
+ Z P(]z)P(j2)R(j1j2 - ]{]é) + Z P(jz)R(j1j2 - ]{]é) (3-20)
J2ihEeven J255€0dd
L#0

The first term on the right-hand-side is the effective one-body rate for identical molecules
(with nuclear spin I;) which is derived in the Appendix; p(11) is the fractional density of even
J molecules with nuclear spin ;. The second term sums over contributions from (even j,
even j) collisions when the two molecules have different nuclear spins and thus are considered
distinguishable molecules. For Ny molecules with even j, the nuclear spin can be either 0 or
2; this term represents the contribution when one molecule has /=0 and the other I=2. The
third term represents (even j, odd j) collisions. The two-body rates R(j1j2 — jij5) in the
second and third terms are distinguishable molecule rates; see Eq. (3.14). A corresponding
expression applies to odd j;, with the “even” and “odd” labels interchanged in Eq. (3.20).
However, for Ny with odd j, the nuclear spin can only be 1, so that the second term in
Eq. (3.20) is missing.

Using Eq. (3.20), the effective one-body rate for identical molecule collisions can be
readily determined from CC and CS cross sections. For the IOS/ECS results, which were
determined without exchange symmetry, excitation rates for identical molecules were calcu-
lated using the o% and o~ generated by Eq. (3.13). The results are presented in Tables VI
and VII. The general trends of the identical molecule rates are similar to the distinguish-
able rates, with the exception that the identical molecules rates for large Aj are significantly

larger than the corresponding distinguishable rates, a result of the more prominent role of
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exchange contributions when the direct term becomes small.

IV. SUMMARY

Using the interaction potential of van der Avoird, et al., [7] we have computed close
coupling cross sections for rotational excitation in Ny-Ny collisions to total energies corre-
sponding to about 300 K. It is found that several (typically 4-8) energetically closed levels
are required to obtain reasonably converged (10%) cross sections. Such calculations tax
the limits of currently available computational facilities but are required to provide bench-
marks for approximate methods. These results have been extended to total energies of about
1000 K by using the coupled states approximation — again this is near the limit of current
computational abilities. The expense of coupled channel methods increases dramatically as
more rotational levels become energetically accessible; this is exacerbated in collisions of two
rotors where the number of channels is the product of the number of channels for each rotor.
It appears from comparisons with the close coupling results that the CS approximation is
accurate to 10-20% below 300 K with accuracy appearing to improve with increasing energy
as expected. The TOS approximation, which is significantly less expensive than the coupled
channel methods is found to be of only moderate accuracy for predicting detailed state-
to-state cross sections; not unexpectedly, it is less accurate for highly inelastic transitions.
Various methods have been proposed to improve 1OS accuracy by approximately correcting
for inelasticity; these are more readily applied to thermally averaged rate constants and we
have considered a few possibilities within the IOS/ECS scaling formalism. These were rea-
sonably successtul, at least for predicting the highly averaged effective one-body excitation
rates, and especially if the fundamental rates were obtained from coupled channel results,
suggesting the utility of such methods for fitting and extrapolating experimental data. It
should be noted that the coupled channel calculations here, although at the limit of current
computational feasibility, are barely adequate to provide values needed for a room temper-

ature thermal average and so extrapolation methods such as those employed here are likely
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to be important. In this context the CSX extrapolation method might prove particularly
useful as CS calculations are required only for the base rates R(0,0 — ji,j2), a much less
expensive undertaking than calculations for the whole matrix of state-to-state rates. This
was, in fact, found to be the case in extending the present study to consider Raman spectral
linewidths for which data are available to much higher rotational levels and to temperatures
of 1500 K. [3] That work reports a reinvestigation of the utility of the IOS and the ECS
approximations and presents an improved methodology. However, these modifications have
only a small effect for the rotational levels and temperature considered here.

Within the coupled channel frameworks we have considered the effects of identical
molecule exchange symmetry which has been ignored in previous studies of this system.
First, we note that conflicting formulas for normalizing identical molecule cross sections are
found in the literature and we rederive this formula in some detail, finding a difference with
the commonly used method of Takayanagi. [10] Second, we find that the quantum interfer-
ence terms very nearly (within a percent or two) average to zero for integral state-to-state
cross sections; that is, to a good approximation the system can be described “classically”
with the effect of exchange symmetry taken into account by adding “direct” and “exchange”
distinguishable molecule cross sections. On the other hand, we find that quantum interfer-
ence effects are significant for individual partial wave contributions, even at the highest
energy considered, suggesting that such effects may be important in quantities such as dit-
ferential cross sections.

The most detailed experimental values available for this system are the room temper-
ature state-to-state rates measured by Sitz and Farrow [2] for relaxation of vibrationally
excited Ny in a bath of ground vibrational state molecules. We argue that these correspond
to distinguishable molecule rates owing to the small probability of vibrational excitation
compared with rotational excitation. We have therefore compared these with distinguish-
able molecule effective one-body rate constants calculated with the coupled channel methods
and from the [OS/ECS scaling methods, finding generally very satisfactory agreement (see

Table 4). Comparison of theoretical values obtained in this study with CARS linewidth
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parameters will be the subject of a subsequent paper. [3]
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APPENDIX

We wish to consider an effective one-body rate of change of population of molecules in
level 7, dN;/dt, owing to collisions with a bath. For the case of a “test” molecule in a bath

of structureless atoms this is written in an obvious way as

dN;/dt = —NZZF(Z —n)+ ZNnﬁ(n — 1) (A-1)

1

where N; is the number density in level ¢ and R(7 — j) is a collision rate, in units of sec™!,

and is equal to the usual rate constant in units of cm®sec™ times the number density of the
bath in em™. Eq. (A-1) is sometimes called a master equation and, if the rate constants
are known, can be used to follow changes with time in the distribution of population among
the molecular levels. The first sum gives the rate of transfer out of level ¢ to all other levels
and the second sum gives the rate of transfer from all other levels into level ;. Note that the
elastic term, ¢ = n, is customarily excluded from the sum. This is actually not required as
its contribution would cancel in the incoming and outgoing terms. For a bath of molecules
which are different from the “test” molecule this is readily generalized, cf. Eq. (3.14), to

give
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AN;/dt = —=N; > R(i —n)+>_ N R(n — 1) (A-2)

where the effective one-body rate is obtained by averaging over the initial levels of the bath

molecules and summing over final levels, cf. Eq. (3.14):
R(i — n) Zp] ij — nk). (A-3)

Here p; is the fractional population in the bath molecule levels and, again, R indicates that
the rate constants have been multiplied by the number density of the bath molecules to give
actual rates.

We need to generalize Eq. (A-3) to the case where the bath molecules are identical to the
“test” molecule. In this case we can discuss only a pair of levels occupied by two molecules,
and we choose to use “well-ordered” indexing such that we count only over levels ¢ > j.
Because of the normalization for the flux established in Section II, the probability of finding
the two molecules initially in levels ¢ and j which is consistent with our definition of the

state-to-state cross section, Eq. (2.16), is just the product
pij = Pip; - (A-1)

We focus on an effective identical molecule one-body rate, ﬁi(i — n), which is anal-
ogous to Eq. (A-3). The problem for identical molecules is the question of how to count
contributions when the bath levels are the same as the initial or final levels of interest. In
fact, it is not clear that a unique counting method exists as some transitions contribute both
forward and backward flux in a given transition and so cancel in the master equation. We
have generally attempted here to exclude such “quasi-elastic” rates, an example of which is
R(ij — ni), from the ¢ — n rate.

We write the effective one-body rate as
ﬁi (¢ — n) Zp] (ijnk) R (zje%), (A-5)

where BT = wtRY +w R, and R and B~ are two-body excitation rates with even and

odd exchange symmetry, i.e., thermal averages of 0% and o~ calculated from Eq. (3.1) and
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multiplied by the bath number density. Note that the sum over the bath molecules is not
restricted but that pairs of indices may need reordering, as indicated by the 77 notation, to
match the indexing for the identical molecule rates. The counting factor, C(ijnk) embodies
the rules for counting specific contributions and it can be calculated from the following set

of logical rules:

0, (G =nnk=i)
Clijnk) = 0, G#iNkFnN(G#nNk=0U( =nNk#1))) (A-6)
2, (J=tNk=nNi#n)

1

, otherwise

Here a(Nb indicates a and b, i.e., both conditions must be met, and a|Jb indicates a or
b. This counting formula applies only to the inelastic effective one-body rates, ¢ # n; we
assume that elastic effective rates are not included in the master equation. The first rule
in Eq. (A-6) excludes the term R(ij — j¢) which is clearly an elastic term. The second
excludes R(ij — ni) and R(in — nk); we believe that these are more appropriately counted
with RE(5 — n) and R*(: — k), respectively, than with R*(7 — n). The third rule counts
R(ii — nn) as transferring two molecules per collision.

Using the fact that C(ijnk) = C(nkij), which is readily verified, and the detailed balance

relation which applies to the two-body rates,
pij RF (1] — nk) = pp RF (nk — j), (A-T)

it is readily shown that these effective one-body rates are related by the expected detailed

balance relation,

(i n) = pR(n— ). (A-8)

&

Pi
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TABLES

TABLE 1. Comparison of CC and CS cross sections (in A?) at 219 and 119 cm ™!

1. J2 J1:73 CcC CS % diff CcC CS % diff
E =119.0 cm™! E =219.0 cm™!
0,0 4,0 2.55 2.09 18.1 1.88 1.27 32.5
0,0 4,2 11.02 7.78 29.5 5.63 4.75 15.7
0,0 4.4 4.98 3.93 21.1 3.60 2.74 23.8
0,0 4,6 3.77 3.32 11.9
0,0 4,8 1.49 1.67 -12.2
0,2 4,0 9.17 12.16 -32.6 6.04 5.20 13.9
0,2 4,2 26.39 19.90 24.6 1.62 1.08 33.5
0,2 4.4 10.00 6.82 31.9 5.79 4.24 26.8
0,2 4,6 7.67 7.07 7.9
0,2 4,8 3.84 4.25 -10.8
0,4 4,0 268.26 277.04 2.9 259.51 259.56 -0.0
0,4 4,2 34.08 27.84 18.3 18.61 21.90 17.7
0,4 4.4 12.39 8.06 34.9 6.03 4.36 27.8
0,4 4,6 8.32 8.02 3.6
0,4 4,8 5.95 6.33 6.4
0,6 4,0 10.04 9.61 4.3 3.72 4.55 22.5
0,6 4,2 35.59 33.58 5.7 13.14 10.06 23.5
0,6 4.4 23.39 16.38 29.9 5.16 4.99 3.4
0,6 4,6 10.39 8.29 20.3
0,6 4,8 7.59 7.75 2.1
0,3 4,0 1.58 1.67 5.7
0,3 4,2 6.33 6.28 0.9
0,3 4.4 6.65 5.89 11.4
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0,8

0,8
0,10
0,10
0,10
0,10
0,10
Sum

Sum?

41,6
4,8
4,0
4,2
4.4
41,6

4,8

447.86

179.60

425.18

148.14

15.22

11.77

2.64

7.31

9.69

31.73

44.98

517.65

258.14

12.54

9.52

3.29

7.83

7.12

21.88

36.78

484.20

224.64

17.6

19.1

-24.9

-7.1

26.5

31.0

18.2

6.5

13.0

2The elastic term 0,4 — 4.0 has been omitted from the summation.
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TABLE II. Selected cross sections (in A?) calculated with even and odd exchange symmetries

and with no exchange.

Jid2 J150h ot (hda — igh) o (g2 — gids)  o%(hge — gtds) 0% (jje — j4it) ot + o

E =680 cm~! @

2,0 6.4 3.44 3.44 1.89 1.55 3.44

3.4 2.20 2.20 1.12 1.08 2.20

10,6 1.66 1.66 0.87 0.79 1.66

6,2 6.4 6.24 6.23 4.77 1.47 6.23

3.4 3.28 3.28 2.26 1.03 3.28

10,6 2.48 2.48 1.42 1.05 2.48

3,2 6.4 3.96 3.96 2.80 1.15 3.96

3.4 5.85 5.85 4.99 0.85 5.84

10,6 2.48 2.48 1.75 0.73 2.48
E =500cm™!

2,0 6.4 4.13 4.14 2.23 1.90 4.13

3.4 2.53 2.52 1.30 1.23 2.53

10,6 1.80 1.80 1.05 0.75 1.80

6,2 6.4 7.03 7.02 5.23 1.80 7.03

3.4 4.00 4.01 2.80 1.20 4.00

10,6 2.77 2.77 1.82 0.95 2.77

3,2 6.4 4.83 4.83 3.31 1.52 4.83

3.4 6.69 6.68 5.66 1.03 6.68

10,6 2.90 2.90 2.25 0.65 2.90
E=39cm~tP

2,0 6.4 4.98 4.99 2.78 2.21 4.99

3.4 2.91 2.91 1.64 1.27 2.91

10,6 1.84 1.85 1.18 0.67 1.85
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62 64
8.4
10,6
82 64
8.4

10,6

7.89

5.10

2.93

6.30

7.97

3.28

7.88

5.10

2.93

6.31

7.97

3.29

5.63

3.75

2.13

4.18

6.69

2.73

2.26

1.35

0.80

2.13

1.28

0.56

7.88

5.10

2.93

6.30

7.97

3.29

2Calculated in the CS approximation with J steps of 3.

bCalculated in the CS approximation with J steps of 1.
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TABLE III. Base rates at a temperature of 300 K in usec™'torr™'? used in the I0S/ECS

extrapolations.

Ly Loy CSX LsSQP 10s°
2 0 2.3577 2.1025 1.9909
2 2 5.0115 3.6386 6.3585
4 0 0.5243 0.5368 0.4447
4 2 1.6997 1.4100 1.3924
4 4 1.9743 1.4609 2.2350
6 0 0.3131 0.3534 0.2372
6 2 0.6224 0.5034 0.3938
6 4 1.2074 0.7069 0.9942
6 6 1.3250 0.6309 1.3889
8 0 0.2027 0.1811 0.1186
8 2 0.3120 0.2401 0.2558
8 4 0.5618 0.2951 0.3914
8 6 0.9403 0.3227 0.8601
8 8 0.9828 0.2151 1.0812

10 0 0.0852 0.0438 0.0590

10 2 0.2019 0.0728 0.1776

10 4 0.2023 0.0756 0.2291

10 6 0.4939 0.1005 0.4252

10 8 0.6995 0.0331 0.7547

10 10 0.7281 0.0047 0.8456

12 0 0.0453 0.0093 0.0355

12 2 0.0865 0.0105 0.0999

12 4 0.0892 0.0120 0.1604

12 6 0.1442 0.0170 0.2223
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12 8 0.3249 0.0034 0.4078

12 10 0.4650 0.0010 0.6075
12 12 0.1237 0.0002 0.6266
14 0 0.0142 0.0010 0.0212
14 2 0.0207 0.0034 0.0550
14 4 0.0340 0.0029 0.0985
14 6 0.0382 0.0027 0.1354
14 8 0.1514 0.0002 0.2033
14 10 0.0750 0.0002 0.3427
14 12 0.0229 0.0000 0.4581
14 14 0.0088 0.0000 0.4482
16 0 0.0020 0.0001 0.0117
16 2 0.0029 0.0002 0.0318
16 4 0.0110 0.0003 0.0548
16 6 0.0046 0.0001 0.0822
16 8 0.0144 0.0003 0.1094
16 10 0.0113 0.0000 0.1743
16 12 0.0024 0.0000 0.2671
16 14 0.0001 0.0000 0.3307
16 16 0.0024 0.0000 0.3219

1 3

aRates in usec”'torr~! may be converted to cm®sec™! using the multiplicative factor 3.0825x 10711,
PEnergy corrected sudden (ECS) scaling with a “critical distance” of [, = 2.5.
€IOS scaling used fundamental rates through Ly, Lo, = 18, the highest of which are not reported

here.
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TABLE IV. Distinguishable molecule effective one-body excitation rates in psec™'torr=!2 for
N3-Ng, even j. Values from coupled channel calculations, with scaling extrapolations for higher

rotor levels, and also from the scaling extrapolation alone. The experimental data of Sitz and

b

Farrow” are also presented.

Rate constants (300 K)

CC-CS plus scaling scaling only

J1 Jji CC-CS¢  CSX LSQ 10S CSX LSQ 1I0s? 10s° ExptP

0 2 7.85 7.96 7.74 7.98 8.44 6.14 8.84 9.87 6.64 + 1.18
0 4 4.08 4.16 4.05 4.15 4.25 3.82 3.99 4.75 3.76 + 0.83
0 6 2.54 2.67 2.57 2.66 2.72 2.58 2.44 3.08 2.73 £ 0.61
0 8 1.43 1.55 1.45 1.55 1.66 1.35 1.59 2.14 0.86 £ 0.51
0 10 0.55 0.65 0.56 0.68 0.84 0.35 0.96 1.41 0.64 + 0.12
0 12 0.15 0.19 0.15 0.24 0.26 0.06 0.51 0.83 0.29 + 0.06
0 14 0.02 0.04 0.02 0.12 0.05 0.01 0.23 0.44 0.22 £+ 0.04
2 4 5.25 5.37 5.20 5.38 6.28 4.70 6.29 7.28 5.13 £ 0.58
2 6 3.00 3.15 3.02 3.14 3.16 2.67 2.94 3.65 2.40 £ 0.44
2 8 1.64 1.77 1.66 1.77 1.82 1.35 1.75 2.34 1.52 + 0.34
2 10 0.73 0.83 0.74 0.86 0.90 0.51 1.04 1.53 0.97 £+ 0.22
2 12 0.22 0.27 0.23 0.32 0.35 0.11 0.56 0.94 0.28 £+ 0.14
2 14 0.04 0.07 0.04 0.14 0.08 0.02 0.26 0.52 0.12 £ 0.04
4 6 4.31 4.57 4.31 4.58 5.41 3.53 5.50 6.51 4.70 £ 0.60
4 8 2.23 2.38 2.24 2.39 2.36 1.63 2.36 3.08 2.20 + 0.40
4 10 1.06 1.18 1.08 1.21 1.16 0.74 1.27 1.88 1.40 £+ 0.20
4 12 0.38 0.45 0.39 0.49 0.52 0.26 0.68 1.19 0.54 + 0.13
4 14 0.09 0.16 0.10 0.22 0.18 0.05 0.33 0.71 0.21 £ 0.04
6 8 3.58 3.95 3.62 3.99 4.67 2.65 4.91 6.05 3.37 £ 0.47
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6 10 1.60 1.82 1.64 1.86 1.82 1.11 1.90 2.74 2.22 + 0.29

6 12 0.66 0.80 0.69 0.83 0.83 0.46 0.93 1.63 0.71 £ 0.14
6 14 0.17 0.31 0.21 0.35 0.34 0.15 0.44 1.01 0.23 + 0.05
8 10 2.88 3.42 2.96 3.48 4.20 2.09 4.44 5.79 2.52 £ 0.41
8 12 1.10 1.34 1.15 1.37 1.50 0.79 1.54 2.54 1.12 +£ 0.22
8 14 0.30 0.56 0.38 0.59 0.63 0.30 0.68 1.49 0.29 £ 0.07
10 12 2.30 3.00 2.43 3.06 3.85 1.66 4.03 5.62 2.68 + 0.43
10 14 0.58 1.12 0.74 1.14 1.27 0.58 1.29 2.44 1.04 £ 0.13
12 14 1.19 2.70 1.56 2.79 3.55 1.32 3.71 5.53 1.83 £ 0.26

1 3

aRates in gsec™!torr~! may be converted to cm®sec™! using the multiplicative factor 3.0825x 10711,
bSee Ref. [2].

“Uses only the available CC-CS rates; others set to zero.

4108 scaling using correction of Ref. [24] for base rates; scaling for downward rates with reverse
rates from detailed balance.

€108 scaling for both upward and downward rates (no detailed balance) and base rates calculated

assuming that the energy is the initial energy for upward transitions.
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TABLE V. Distinguishable molecule effective one-body excitation rates at a temperature of
300 K in psec'torr=12 for Ny-Ny, odd j. Values from coupled channel calculations plus two

different extrapolation schemes for higher rotor states.

J 71 cc-csb plus CSX scaling® plus LSQ scaling®
1 3 5.82 5.94 5.76
1 5 3.34 3.50 3.36
1 7 2.04 2.16 2.06
1 9 0.98 1.10 1.09
1 11 0.33 0.40 0.34
1 13 0.07 0.10 0.08
3 5 4.61 4.88 4.62
3 7 2.56 2.69 2.56
3 9 1.27 1.42 1.30
3 11 0.52 0.60 0.53
3 13 0.14 0.19 0.15
5 7 3.88 4.19 3.90
5 9 1.82 2.07 1.87
5 11 0.81 0.95 0.84
5 13 0.25 0.35 0.27
7 9 3.12 3.64 3.21
7 11 1.32 1.53 1.36
7 13 0.51 0.67 0.55
9 11 2.50 3.14 2.62
9 13 0.82 1.18 0.92

11 13 1.93 2.81 2.10

1 3

aRates in gsec™!torr~! may be converted to cm®sec™! using the multiplicative factor 3.0825x 10711,
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PUses only the available CC-CS rates; others set to zero.

“Uses CC-CS rates if available and generates the rest from the indicated extrapolation method.
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TABLE VI. Identical molecule effective one-body excitation rates at a temperature of 300 K
in psec™'torr~12 for No-Ny, even j. Values from coupled channel calculations plus two different

extrapolation schemes for higher rotor states.

J 71 cc-csb plus CSX scaling® plus LSQ scaling®
0 2 7.92 3.00 7.79
0 4 4.39 4.44 4.34
0 6 3.08 3.16 3.06
0 3 2.05 2.14 2.05
0 10 1.18 1.24 1.14
0 12 0.61 0.64 0.59
0 14 0.28 0.34 0.29
2 4 5.18 5.24 5.07
2 6 3.19 3.30 3.17
2 3 2.02 2.11 2.01
2 10 1.16 1.24 1.14
2 12 0.58 0.62 0.56
2 14 0.22 0.31 0.25
4 6 4.22 4.41 4.15
4 3 2.42 2.53 2.39
4 10 1.37 1.48 1.37
4 12 0.69 0.75 0.67
4 14 0.24 0.35 0.26
6 3 3.47 3.83 3.48
6 10 1.77 2.00 1.80
6 12 0.86 1.04 0.90
6 14 0.27 0.54 0.35
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8 10 2.82 3.36 2.88

8 12 1.21 1.50 1.27
8 14 0.37 0.77 0.49
10 12 2.26 3.01 2.38
10 14 0.68 1.25 0.85
12 14 1.28 2.67 1.60

1 3

aRates in usec”'torr~! may be converted to cm®sec™! using the multiplicative factor 3.0825x 10711,
PUses only the available CC-CS rates; others set to zero.

“Uses CC-CS rates if available and generates the rest from the indicated extrapolation method.
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TABLE VII. Identical molecule effective one-body excitation rates at a temperature of 300 K
in pusec 'torr=!'2 for Ny-Nj, odd j. Values from coupled channel calculations plus two different

extrapolation schemes for higher rotor states.

J 71 cc-csb plus CSX scaling® plus LSQ scaling®
1 3 5.83 5.87 5.69
1 5 3.48 3.60 3.46
1 7 2.32 2.41 2.31
1 9 1.32 1.46 1.34
1 11 0.65 0.71 0.64
1 13 0.27 0.33 0.29
3 5 4.56 4.76 4.50
3 7 2.68 2.79 2.66
3 9 1.50 1.64 1.51
3 11 0.76 0.84 0.77
3 13 0.31 0.38 0.32
5 7 3.81 4.07 3.77
5 9 1.94 2.17 1.97
5 11 0.99 1.12 1.01
5 13 0.40 0.51 0.42
7 9 3.07 3.57 3.13
7 11 1.44 1.64 1.46
7 13 0.60 0.78 0.65
9 11 2.45 3.09 2.55
9 13 0.88 1.28 0.97

11 13 1.80 2.68 1.95

1 3

aRates in gsec™!torr~! may be converted to cm®sec™! using the multiplicative factor 3.0825x 10711,
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PUses only the available CC-CS rates; others set to zero.

“Uses CC-CS rates if available and generates the rest from the indicated extrapolation method.
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FIG. 1. Difference between selected CS and I0S cross sections at 680 cm™!.
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FIG. 2. Difference between ¢t and o~ calculated in the CC formulation at 219 ecm™?.
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FIG. 3. Difference between the partial cross sections o} and o as a function of J for the (0,2)

— (4,6) transition, calculated in the CC formulation at 219 cm~!and in the CS approximation at

680 cm L.
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FIG. 4. Effective one-body rate constants for j; — j; from the coupled channel (CC-CS)
calculations and from CC-CS augmented with extrapolations using the CSX and LSQ schemes are

compared with the experimental data of Sitz and Farrow, Ref. [2].
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